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Introduction

Definition

A covering system is a set of conguences in which every integer
satisfies at least one of the congruences.

Examples:
x ≡ 0 (mod 2), x ≡ 1 (mod 2){

x ≡ 0 (mod 2), x ≡ 0 (mod 3), x ≡ 1 (mod 4)

x ≡ 3 (mod 8), x ≡ 7 (mod 12), x ≡ 23 (mod 24)

Definition

A covering system is called distinct if no two of the moduli are
equal.
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Motivation

Conjecture (de Polignac, 1849)

All odd integers ≥ 3 can be written as 2k + p for k ∈ N and p is
either a prime or 1

Theorem (Erdős, 1950)

There exists an arithmetic progression consisting only of odd
numbers, no term of which is of the form 2k + p.

The proof of the above is where Erdős invented covering systems.
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There exists an arithmetic progression consisting only of odd
numbers, no term of which is of the form 2k + p.

The proof of the above is where Erdős invented covering systems.
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Motivation 2

Erdős used the covering system from example 2 to construct the
arithmetic progression which disproved de Polignac’s conjecture.

Erdős also constructed a distinct covering system with least
modulus 3 and largest modulus 120. Erdős wrote

Quote

“It seems likely that for every c there exists such a system all the
moduli of which are > c .”

Proving or disproving this statement became the minimum
modulus problem. For decades many mathematicians believed that
indeed, it is possible to construct covering systems with arbitrarily
large least modulus.
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Erdős used the covering system from example 2 to construct the
arithmetic progression which disproved de Polignac’s conjecture.
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The Minimum Modulus Problem

Conjecture

For any positive integer c, there exists a distinct covering system
with minimum modulus greater than c .

Swift (1954) smallest modulus 4, later improved to 6

Churchhouse (1968) with 9

Krukenberg (1971) with 18

Choi (1971) with 20

Morikawa (1981) with 24

Gibson (1996) with 25

Nielsen (2009) with 40 using a recursion

Owens (2014) with 42 (using over 1050 congruences)
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Breakthrough

Turns out Erdős was wrong (gasp).

Theorem (Hough, 2015)

The minimum modulus in any distinct covering system does not
exceed 1016.

Theorem (Balister, Bollobás, Morris, Sahasrabudhe, and Tiba,
2018)

The minimum modulus in any distinct covering system does not
exceed 606000.

(This number makes my work possible)
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Related Problem

Question

If the minimum modulus of a distinct covering system is m, then
what is the smallest that the largest modulus can be?

Theorem (Krukenberg, 1971)

If the minimum modulus of a distinct covering system is 2, then
the largest modulus is at least 12.

Theorem (Krukenberg, 1971)

If the minimum modulus of a distinct covering system is 3, then
the largest modulus is at least 36.
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Main Results

Krukenberg said he proved the following but no proof has ever
shown up in the literature:

Theorem

If the minimum modulus of a distinct covering system is 4, then
the largest modulus is at least 60.

In the paper with Dr. Trifonov, we supply a proof.

Also, we proved the following:

Theorem (D. and Trifonov, 2022)

For each integer m ≥ 3, there is no distinct covering system with
all moduli in the interval [m, 8m]
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Helpful Lemma

One of the tools we used:

Lemma

If C is the list of congruences in a covering system, then∑
n∈C

1

n
≥ 1.

The probability that a random integer is in a particular congruence
class modulo n is exactly 1

n , so if all of the probablilities do not add
up to at least 1, then the list of congruences is not a covering.
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Weirdo Notation

To begin talking more about the details going into the results, we
first need to introduce some tricky notation, called coordinate
representation of a congruence.

Consider the particular congruence x ≡ r (mod n), where n > 1
has prime factorization n = pa11 · · · p

ak
k where pk is the kth prime.

For the moment, we suppose all al ≥ 1.

We find the remainders r1, r2, . . . , rk when r is divided by
pa11 , . . . , pakk respectively.

Let d1 be the base p1 - representation of r1 with its base p1 digits
written in reverse order. Define similarly, d2, . . . , dk .

Then, x ≡ r (mod n) is written (d1| d2| . . . | dk) in our notation.
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Example of Notation

For example, consider the congruence x ≡ 6 (mod 120).

It is equivalent to the system of congruences
x ≡ 6 (mod 23),

x ≡ 0 (mod 3), and

x ≡ 1 (mod 5).

Thus, for x ≡ 6 (mod 120) we have r = 6 and n = 23 · 3 · 5, and so

r ≡ 6 (mod 23) ⇒r1 = 6 ⇒d1 = 0112,

r ≡ 0 (mod 3) ⇒r2 = 0 ⇒d2 = 03,

r ≡ 1 (mod 5) ⇒r3 = 1 ⇒d3 = 15.

So x ≡ 6 (mod 120) is written (011| 0| 1).
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What?

So why would we use such crazy-looking notation?

Because it makes both splitting a congruence modulo a prime nice
and reducing a congruence modulo a prime nice, as well as it helps
visualize coverings. More on this in the coming slides.

One more little note about the notation: if one or more of the
exponents al in the factorizatizion n = pa11 · · · p

ak
k is zero, then we

put ∗ in the lth position of the notation for the congruence.

For example,

x ≡ 1 (mod 10) is written (1| ∗ | 1).
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Building a Distinct Covering Using a Tree

N

0 1

0 1

0 1 2

Normal notation → our notation
0 (mod 2)→ (0)
1 (mod 4)→ (10)
0 (mod 3)→ (∗| 0)
5 (mod 6)→ (1| 2)
7 (mod 12)→ (11| 1)
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Splitting a Congruence Modulo a Prime

Assume that p is prime, a is a nonegative integer, n is a positive
integer, and pa||n.

Splitting the residue class r (mod n) modulo p means that we
replace it by p residue classes modulo np by consecutively
appending the base-p digits 0, 1, . . . , p − 1 in the position
corresponding to pa+1 in the coordinate representation of the
residue class.

For example, if we split (1| 1| 4) modulo 3, we obtain the ‘fibers’
(1| 10, 11, 12| 4).
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Reducing a Congruence Modulo a Prime

Similarly, assume that p is prime, a and n are positive integers, and
pa||n.

Reducing the residue class r (mod n) modulo p means that we
delete the base-p digit in the position corresponding to pa in the
coordinate representation of the residue class.

For example, if we reduce (0| 21| 34) modulo 5 we get (0| 21| 3) .

Note, if you reduce a covering system modulo a prime, the
resulting list of congruences will still be a covering (possibly not a
disinct one).

So if you reduce a set of congruences that you think could be a
covering modulo a prime, and end up with some integers left
uncovered, then the original set of congruences cannot be a
covering.

Jack R Dalton University of South Carolina

Extreme Covering Systems



Reducing a Congruence Modulo a Prime

Similarly, assume that p is prime, a and n are positive integers, and
pa||n.

Reducing the residue class r (mod n) modulo p means that we
delete the base-p digit in the position corresponding to pa in the
coordinate representation of the residue class.

For example, if we reduce (0| 21| 34) modulo 5 we get (0| 21| 3) .

Note, if you reduce a covering system modulo a prime, the
resulting list of congruences will still be a covering (possibly not a
disinct one).

So if you reduce a set of congruences that you think could be a
covering modulo a prime, and end up with some integers left
uncovered, then the original set of congruences cannot be a
covering.

Jack R Dalton University of South Carolina

Extreme Covering Systems



Reducing a Congruence Modulo a Prime

Similarly, assume that p is prime, a and n are positive integers, and
pa||n.

Reducing the residue class r (mod n) modulo p means that we
delete the base-p digit in the position corresponding to pa in the
coordinate representation of the residue class.

For example, if we reduce (0| 21| 34) modulo 5 we get (0| 21| 3) .

Note, if you reduce a covering system modulo a prime, the
resulting list of congruences will still be a covering (possibly not a
disinct one).

So if you reduce a set of congruences that you think could be a
covering modulo a prime, and end up with some integers left
uncovered, then the original set of congruences cannot be a
covering.

Jack R Dalton University of South Carolina

Extreme Covering Systems



Reducing a Congruence Modulo a Prime

Similarly, assume that p is prime, a and n are positive integers, and
pa||n.

Reducing the residue class r (mod n) modulo p means that we
delete the base-p digit in the position corresponding to pa in the
coordinate representation of the residue class.

For example, if we reduce (0| 21| 34) modulo 5 we get (0| 21| 3) .

Note, if you reduce a covering system modulo a prime, the
resulting list of congruences will still be a covering (possibly not a
disinct one).

So if you reduce a set of congruences that you think could be a
covering modulo a prime, and end up with some integers left
uncovered, then the original set of congruences cannot be a
covering.

Jack R Dalton University of South Carolina

Extreme Covering Systems



Reducing a Congruence Modulo a Prime

Similarly, assume that p is prime, a and n are positive integers, and
pa||n.

Reducing the residue class r (mod n) modulo p means that we
delete the base-p digit in the position corresponding to pa in the
coordinate representation of the residue class.

For example, if we reduce (0| 21| 34) modulo 5 we get (0| 21| 3) .

Note, if you reduce a covering system modulo a prime, the
resulting list of congruences will still be a covering (possibly not a
disinct one).

So if you reduce a set of congruences that you think could be a
covering modulo a prime, and end up with some integers left
uncovered, then the original set of congruences cannot be a
covering.

Jack R Dalton University of South Carolina

Extreme Covering Systems



A Fun Example

Lemma

Let C be a covering system such that pa|L, where L is the lcm of
moduli, for some prime p and integer a ≥ 1. Suppose that there
are k congruences in C whose moduli are divisible by pa. Then, if
k < p, we can discard from C all congruences whose moduli are
divisible by pa, and will still have a covering.

This can be used relatively easily to show that there is no distinct
covering system with all of the moduli in the interval [2, 11].

Suppose there is a distinct covering system with all of the moduli
in the interval [2, 11]. Thus the set of moduli must be a subset of

{2, 3, 22, 5, 2 · 3, 7, 23, 32, 2 · 5, 11}
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Does this always work?

Sadly, this previous lemma is not strong enough for showing that
the interval [3, 36] is also minimal, but we have a fancier lemma
that helps:

Lemma

Let C be a distinct covering system with all moduli in the interval
[c , d ]. If p is a prime and a is a positive integer such that
pa(p + 1) > d , then we can discard all congruences whose moduli
are multiples of pa and still have a covering.

Using the lemma from the previous slide, we get that if there exists
a distinct covering system with all of the moduli in the interval
[3, 35], then the set of moduli must be a subset of

{3, 22, 5, 2 · 3, 23, 2 · 5, 22 · 3, 3 · 5, 22 · 5, 23 · 3, 2 · 3 · 5}
From there you have to break it down into cases, which seems a
bit tedious for this talk, so we’ll move on.
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It Gets Worse

Showing the interval [4, 60] is minimal for the congruences in a
distinct covering system takes about 4 pages of cases and
subcases, so let’s just skip that too!

However, this last Lemma is one of the main ingredients for
proving our theorem about the nonexistence of distinct covering
systems with all of the moduli in the interval [m, 8m] for m ≥ 3.
Let’s look at some of those details now, by combining the previous
lemma with our old friend

Lemma

If C is the list of congruences in a covering system, then∑
n∈C

1

n
≥ 1.
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Assume that for some integer m ≥ 3 there is a distinct covering C
with all moduli in the interval [m, 8m].

Let Cm be a minimal covering (in the sense that if you remove any
congruences, it is no longer a covering) which is a subset of C.

Let L be the least common multiple of the moduli of the
congruences in Cm. By one of the lemmas, if pa|L for some prime
p and a positive integer a, then the interval [m, 8m] contains at
least p multiples of pa that are not multiple of pa+1.

Since one of every p consecutive multiples of pa are divisible by
pa+1, we get that the interval [m, 8m] must contain at least p + 1
multiples of pa.
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Denote by M⊆ [m, 8m] the set of moduli from the congruences in
Cm.

Let p be a prime. The number of multiples of p in the interval
[m, 8m] is

np :=

⌊
8m

p

⌋
−
⌊
m − 1

p

⌋
=

7m + 1

p
−
{

8m

p

}
+

{
m − 1

p

}
,

where {x} denotes the fractional part of x .

Since 0 ≤ {x} < 1, if we assume p ≥
√

7m + 1, we get

np <
7m + 1

p
+ 1 ≤

√
7m + 1 + 1 ≤ p + 1.
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Thus, for each p ≥
√

7m + 1 there are less than p + 1 multiples of
p in the interval [m, 8m].

Therefore, if n is a modulus of one of the congruences in Cm (that
is n ∈M), then all the prime divisors of n are less than

√
7m + 1.

Since, the density of integers covered by a congruence modulo n is
1/n, and Cm is a covering, we get∑

m≤n≤8m,
P(n)<

√
7m+1

1

n
≥
∑
n∈M

1

n
≥ 1,

where P(n) denotes the largest prime divisor of n.
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Let

Sm =
∑
n∈M

1

n
and Tm =

∑
m≤n≤8m,

P(n)<
√
7m+1

1

n
.

We checked by direct computation (using python), and a shortcut,
that Tm < 1 for all m ∈ [26, 606000].

We didn’t need to check the sum for all values of m because we
could make jumps by defining:

an =

{
1
n , if P(n) <

√
7n + 1

0 otherwise.
,

then using the inequality Tm−1 ≤ Tm + am−1
Using this shortcut, the next value of Tm that we needed to
calculate after T606000 was T286067.
There were a few counterexamples for m ∈ [3, 25], where Tm > 1,
but these were fixed by considering the squares of some of the
primes.
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There were a few counterexamples for m ∈ [3, 25], where Tm > 1,
but these were fixed by considering the squares of some of the
primes.
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Open Problems and Further Work

Conjecture

If the least modulus of a distinct covering system is 5, then its
largest modulus is at least 108.

We can show that if the least modulus of a distinct covering system
is 5, then its largest modulus is at least 84. However, the result is
too weak, and the proof too long, to be included in our paper.

I was able to use this weaker result to show the nonexistence of
distinct covering systems with all of the moduli in the interval
[m, 9m] for m ≥ 3 except for the numbers m = 24 and m = 48.
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Thank you for coming to my talk!
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